328 lines
9.8 KiB
C++
328 lines
9.8 KiB
C++
#include <Arduino.h>
|
|
#include <lcdgfx.h>
|
|
#include <FastTrig.h>
|
|
#include "I2Cdev.h"
|
|
// #include "MPU6050_6Axis_MotionApps20.h"
|
|
#include "MPU6050_6Axis_MotionApps612.h"
|
|
|
|
DisplaySSD1306_128x64_I2C display(-1);
|
|
MPU6050 mpu;
|
|
|
|
// Simulation constants
|
|
#define SIM_WIDTH 128
|
|
#define SIM_HEIGHT 64
|
|
#define NUM_PARTICLES 1000
|
|
#define PARTICLE_RADIUS 2
|
|
#define GRAVITY 1.0f
|
|
#define DAMPING 0.4f
|
|
#define PRESSURE_RADIUS 3.5f
|
|
#define PRESSURE_FORCE 0.9f
|
|
#define MAX_VEL 1.0f
|
|
#define IMU_ADDRESS 0x68
|
|
#define OUTPUT_READABLE_YAWPITCHROLL
|
|
#define LED 2
|
|
|
|
// I2C device found at address 0x3C ! // OLED
|
|
// I2C device found at address 0x68 ! // IMU
|
|
|
|
typedef float f32 __attribute__((aligned(4)));
|
|
struct Particle {
|
|
f32 x, y;
|
|
f32 vx, vy;
|
|
};
|
|
|
|
|
|
inline float fast_sqrt(float x) {
|
|
union { float f; uint32_t i; } u;
|
|
u.f = x;
|
|
u.i = 0x5f375a86 - (u.i >> 1);
|
|
return u.f * (1.5f - 0.5f * x * u.f * u.f);
|
|
}
|
|
|
|
Particle particles[NUM_PARTICLES];
|
|
uint8_t canvasData[SIM_WIDTH*(SIM_HEIGHT/8)]; // because of 1bit display, not RGB
|
|
NanoCanvas1 canvas(SIM_WIDTH, SIM_HEIGHT, canvasData);
|
|
|
|
|
|
#define GRID_SIZE 16
|
|
#define CELL_SIZE (SIM_WIDTH/GRID_SIZE)
|
|
|
|
int const INTERRUPT_PIN = 18;
|
|
/*---MPU6050 Control/Status Variables---*/
|
|
bool DMPReady = false; // Set true if DMP init was successful
|
|
uint8_t MPUIntStatus; // Holds actual interrupt status byte from MPU
|
|
uint8_t devStatus; // Return status after each device operation (0 = success, !0 = error)
|
|
uint16_t packetSize; // Expected DMP packet size (default is 42 bytes)
|
|
uint8_t FIFOBuffer[64]; // FIFO storage buffer
|
|
/*---Orientation/Motion Variables---*/
|
|
Quaternion q; // [w, x, y, z] Quaternion container
|
|
VectorInt16 aa; // [x, y, z] Accel sensor measurements
|
|
VectorInt16 gy; // [x, y, z] Gyro sensor measurements
|
|
VectorInt16 aaReal; // [x, y, z] Gravity-free accel sensor measurements
|
|
VectorInt16 aaWorld; // [x, y, z] World-frame accel sensor measurements
|
|
VectorFloat gravity; // [x, y, z] Gravity vector
|
|
uint16_t fifoCount;
|
|
float euler[3]; // [psi, theta, phi] Euler angle container
|
|
float ypr[3]; // [yaw, pitch, roll] Yaw/Pitch/Roll container and gravity vector
|
|
|
|
/*------Interrupt detection routine------*/
|
|
volatile bool MPUInterrupt = true; // Indicates whether MPU6050 interrupt pin has gone high
|
|
void DMPDataReady() {
|
|
MPUInterrupt = true;
|
|
}
|
|
|
|
|
|
|
|
struct GridCell {
|
|
uint8_t particles[10];
|
|
uint8_t count;
|
|
};
|
|
|
|
GridCell grid[GRID_SIZE][GRID_SIZE];
|
|
|
|
bool blinkState;
|
|
|
|
void buildSpatialGrid() {
|
|
memset(grid, 0, sizeof(grid));
|
|
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
#ifdef __AVR__
|
|
float x = TO_FLOAT(particles[i].x);
|
|
float y = TO_FLOAT(particles[i].y);
|
|
#else
|
|
float x = particles[i].x;
|
|
float y = particles[i].y;
|
|
#endif
|
|
|
|
int gx = constrain(x / CELL_SIZE, 0, GRID_SIZE-1);
|
|
int gy = constrain(y / CELL_SIZE, 0, GRID_SIZE-1);
|
|
|
|
if(grid[gx][gy].count < 10) {
|
|
grid[gx][gy].particles[grid[gx][gy].count++] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void setup() {
|
|
// String str; // Hhack
|
|
Serial.begin(38400);
|
|
while (!Serial) {
|
|
;
|
|
}
|
|
Serial.println("Initializing MPU...");
|
|
/*--Start I2C interface--*/
|
|
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
|
|
Wire.begin();
|
|
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
|
|
Fastwire::setup(400, true);
|
|
#endif
|
|
mpu.initialize();
|
|
|
|
Serial.println("Testing MPU6050 connection...");
|
|
// if(mpu.testConnection() == false){
|
|
// Serial.println("MPU6050 connection failed");
|
|
// while(true);
|
|
// }
|
|
// else{
|
|
devStatus = mpu.dmpInitialize();
|
|
Serial.println("MPU6050 connection successful");
|
|
mpu.setAccelerometerPowerOnDelay(3);
|
|
mpu.setSleepEnabled(false);
|
|
mpu.setStandbyXAccelEnabled(false);
|
|
mpu.setStandbyYAccelEnabled(false);
|
|
mpu.setStandbyZAccelEnabled(false);
|
|
mpu.setDHPFMode(0);
|
|
mpu.setInterruptLatch(false);
|
|
mpu.setIntEnabled(true);
|
|
mpu.setInterruptMode(true);
|
|
mpu.setIntMotionEnabled(true);
|
|
|
|
mpu.setMotionDetectionDuration(1);
|
|
mpu.setMotionDetectionThreshold(20);
|
|
// mpu.setIntDMPEnabled(true);
|
|
|
|
|
|
mpu.setXGyroOffset(-69);
|
|
mpu.setYGyroOffset(-48);
|
|
mpu.setZGyroOffset(-19);
|
|
mpu.setXAccelOffset(-5158);
|
|
mpu.setYAccelOffset(-4576);
|
|
mpu.setZAccelOffset(7687);
|
|
|
|
mpu.CalibrateAccel(6); // Calibration Time: generate offsets and calibrate our MPU6050
|
|
mpu.CalibrateGyro(6);
|
|
Serial.println("These are the Active offsets: ");
|
|
mpu.PrintActiveOffsets();
|
|
Serial.println(F("Enabling DMP...")); //Turning ON DMP
|
|
mpu.setDMPEnabled(true);
|
|
|
|
// mpu.setWakeCycleEnabled(true);
|
|
|
|
delay(5);
|
|
|
|
mpu.setDHPFMode(7);
|
|
// mpu.setWakeFrequency(5);
|
|
// mpu.setWakeCycleEnabled(true);
|
|
// mpu.setStandbyXAccelEnabled(true);
|
|
// mpu.setStandbyYAccelEnabled(true);
|
|
// mpu.setStandbyZAccelEnabled(true);
|
|
// mpu.setIntDMPEnabled(true);
|
|
// mpu.setSleepEnabled(true);
|
|
|
|
|
|
/*Enable Arduino interrupt detection*/
|
|
Serial.print(F("Enabling interrupt detection (Arduino external interrupt "));
|
|
Serial.print(digitalPinToInterrupt(INTERRUPT_PIN));
|
|
Serial.println(F(")..."));
|
|
attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), DMPDataReady, RISING);
|
|
MPUIntStatus = mpu.getIntStatus();
|
|
Serial.println(MPUIntStatus);
|
|
Serial.println(devStatus);
|
|
/* Set the DMP Ready flag so the main loop() function knows it is okay to use it */
|
|
Serial.println(F("DMP ready! Waiting for first interrupt..."));
|
|
DMPReady = true;
|
|
packetSize = mpu.dmpGetFIFOPacketSize(); //Get expected DMP packet size for later comparison
|
|
// }
|
|
// setup display
|
|
display.begin();
|
|
display.clear();
|
|
canvas.setMode(CANVAS_MODE_TRANSPARENT);
|
|
|
|
// Initialize particles in a droplet pattern
|
|
float cx = SIM_WIDTH/2;
|
|
float cy = SIM_HEIGHT/4;
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
float angle = random(360) * PI / 180.0;
|
|
float radius = random(10);
|
|
particles[i].x = cx + icos(angle) * radius;
|
|
particles[i].y = cy + isin(angle) * radius;
|
|
particles[i].vx = random(-50,50)/25.0; // -2 to +2
|
|
particles[i].vy = random(-25,50)/25.0; // -1 to +2
|
|
//Serial.print("\nParticle ");
|
|
//Serial.print(i);
|
|
//Serial.print(" done");
|
|
}
|
|
}
|
|
|
|
void applyPhysics() {
|
|
// Build spatial grid
|
|
buildSpatialGrid();
|
|
|
|
// Interactions using grid
|
|
const float PRESSURE_RADIUS_SQ = PRESSURE_RADIUS * PRESSURE_RADIUS;
|
|
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
const int gx = particles[i].x / CELL_SIZE;
|
|
const int gy = particles[i].y / CELL_SIZE;
|
|
|
|
// Check 3x3 grid around particle
|
|
for(int dx=-1; dx<=1; dx++) {
|
|
for(int dy=-1; dy<=1; dy++) {
|
|
if(gx+dx < 0 || gx+dx >= GRID_SIZE) continue;
|
|
if(gy+dy < 0 || gy+dy >= GRID_SIZE) continue;
|
|
|
|
GridCell &cell = grid[gx+dx][gy+dy];
|
|
for(int c=0; c<cell.count; c++) {
|
|
const int j = cell.particles[c];
|
|
if(j <= i) continue; // Avoid duplicate pairs
|
|
|
|
const float dx = particles[j].x - particles[i].x;
|
|
const float dy = particles[j].y - particles[i].y;
|
|
const float dist_sq = dx*dx + dy*dy;
|
|
|
|
if(dist_sq < PRESSURE_RADIUS_SQ && dist_sq > 0.01f) {
|
|
const float dist = fast_sqrt(dist_sq) + 0.001f;
|
|
const float force = PRESSURE_FORCE * (1.0f - dist/PRESSURE_RADIUS);
|
|
|
|
// Only apply horizontal forces to preserve gravity
|
|
particles[i].vx -= force * dx/dist;
|
|
particles[j].vx += force * dx/dist;
|
|
|
|
// Reduce vertical force impact
|
|
particles[i].vy -= force * dy/dist * 0.3f;
|
|
particles[j].vy += force * dy/dist * 0.3f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Gravity and movement
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
particles[i].vy += gravity.y * GRAVITY;
|
|
particles[i].vx += gravity.x * GRAVITY;
|
|
particles[i].x += particles[i].vx;
|
|
particles[i].y += particles[i].vy;
|
|
particles[i].vx = constrain(particles[i].vx, -MAX_VEL, MAX_VEL);
|
|
particles[i].vy = constrain(particles[i].vy, -MAX_VEL, MAX_VEL);
|
|
// X-axis
|
|
if(particles[i].x <= 0 || particles[i].x >= SIM_WIDTH-1) {
|
|
particles[i].vx *= -DAMPING;
|
|
particles[i].x = constrain(particles[i].x, 1, SIM_WIDTH-2);
|
|
}
|
|
|
|
// Y-axis
|
|
if(particles[i].y <= 0 || particles[i].y >= SIM_HEIGHT-1) {
|
|
particles[i].vy *= -DAMPING;
|
|
particles[i].y = constrain(particles[i].y, 1, SIM_HEIGHT-2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Direct canvas buffer access (replace drawParticles)
|
|
void drawParticles() {
|
|
// Clear canvas by direct memory access
|
|
memset(canvasData, 0, sizeof(canvasData));
|
|
// canvas.clear();
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
int x = constrain(static_cast<int>(particles[i].x + 0.5f), 0, SIM_WIDTH-1);
|
|
int y = constrain(static_cast<int>(particles[i].y + 0.5f), 0, SIM_HEIGHT-1);
|
|
|
|
#if PARTICLE_RADIUS == 1
|
|
canvas.putPixel(x, y);
|
|
#else
|
|
canvas.drawCircle(x,y,PARTICLE_RADIUS-1);
|
|
#endif
|
|
}
|
|
|
|
display.drawCanvas(0,0,canvas);
|
|
}
|
|
|
|
void reportIMU() {
|
|
if (!DMPReady) return; // Stop the program if DMP programming fails.
|
|
if (!MPUInterrupt) return;
|
|
MPUIntStatus = mpu.getIntStatus();
|
|
/* Read a packet from FIFO */
|
|
fifoCount = mpu.getFIFOCount();
|
|
// check for overflow (this should never happen unless our code is too inefficient)
|
|
if ((MPUIntStatus & 0x10) || fifoCount == 1024) {
|
|
// reset so we can continue cleanly
|
|
mpu.resetFIFO();
|
|
Serial.println(F("FIFO overflow!, giro descompensat!!"));
|
|
Serial.print("&");
|
|
// otherwise, check for DMP data ready interrupt (this should happen frequently)
|
|
}
|
|
else if (MPUIntStatus & 0x02) {
|
|
if (mpu.dmpGetCurrentFIFOPacket(FIFOBuffer)) { // Get the Latest packet
|
|
mpu.dmpGetQuaternion(&q, FIFOBuffer);
|
|
mpu.dmpGetGravity(&gravity, &q);
|
|
}
|
|
}
|
|
MPUInterrupt = false;
|
|
}
|
|
|
|
|
|
void loop() {
|
|
static uint32_t last_frame = 0;
|
|
//lcd_delay(5000);
|
|
drawParticles();
|
|
reportIMU();
|
|
//delay(1000);
|
|
if(millis() - last_frame >= 33) {
|
|
last_frame = millis();
|
|
applyPhysics();
|
|
} else {
|
|
lcd_delay(millis() - last_frame);
|
|
}
|
|
}
|