334 lines
9.8 KiB
C++
334 lines
9.8 KiB
C++
#include <Arduino.h>
|
|
#include <lcdgfx.h>
|
|
#include <FastTrig.h>
|
|
|
|
// this is working on the mega
|
|
|
|
DisplaySSD1306_128x64_I2C display(-1);
|
|
|
|
// Simulation constants
|
|
#define SIM_WIDTH 128
|
|
#define SIM_HEIGHT 64
|
|
#define NUM_PARTICLES 80
|
|
#define PARTICLE_RADIUS 2
|
|
#define GRAVITY 0.9f
|
|
#define DAMPING 0.92f
|
|
#define PRESSURE_RADIUS 4.5f
|
|
#define PRESSURE_FORCE 0.6f
|
|
#define MAX_VEL 10.0f
|
|
|
|
#ifdef __AVR__
|
|
typedef int16_t fixed_t;
|
|
#define FIX_SHIFT 6
|
|
#define TO_FIXED(x) ((fixed_t)((x) * (1<<FIX_SHIFT)))
|
|
#define TO_FLOAT(x) ((x) / (1<<FIX_SHIFT))
|
|
|
|
struct Particle {
|
|
fixed_t x, y;
|
|
fixed_t vx, vy;
|
|
};
|
|
|
|
#else
|
|
typedef float f32 __attribute__((aligned(4)));
|
|
struct Particle {
|
|
f32 x, y;
|
|
f32 vx, vy;
|
|
};
|
|
#endif
|
|
|
|
inline float fast_sqrt(float x) {
|
|
union { float f; uint32_t i; } u;
|
|
u.f = x;
|
|
u.i = 0x5f375a86 - (u.i >> 1);
|
|
return u.f * (1.5f - 0.5f * x * u.f * u.f);
|
|
}
|
|
|
|
Particle particles[NUM_PARTICLES];
|
|
uint8_t canvasData[SIM_WIDTH*(SIM_HEIGHT/8)];
|
|
NanoCanvas1 canvas(SIM_WIDTH, SIM_HEIGHT, canvasData);
|
|
|
|
|
|
#define GRID_SIZE 16
|
|
#define CELL_SIZE (SIM_WIDTH/GRID_SIZE)
|
|
|
|
struct GridCell {
|
|
uint8_t particles[10];
|
|
uint8_t count;
|
|
};
|
|
|
|
GridCell grid[GRID_SIZE][GRID_SIZE];
|
|
|
|
void buildSpatialGrid() {
|
|
memset(grid, 0, sizeof(grid));
|
|
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
#ifdef __AVR__
|
|
float x = TO_FLOAT(particles[i].x);
|
|
float y = TO_FLOAT(particles[i].y);
|
|
#else
|
|
float x = particles[i].x;
|
|
float y = particles[i].y;
|
|
#endif
|
|
|
|
int gx = constrain(x / CELL_SIZE, 0, GRID_SIZE-1);
|
|
int gy = constrain(y / CELL_SIZE, 0, GRID_SIZE-1);
|
|
|
|
if(grid[gx][gy].count < 10) {
|
|
grid[gx][gy].particles[grid[gx][gy].count++] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void setup() {
|
|
// String str; // Hhack
|
|
display.begin();
|
|
display.clear();
|
|
canvas.setMode(CANVAS_MODE_TRANSPARENT);
|
|
|
|
// Serial.begin(115200);
|
|
// while (!Serial);
|
|
|
|
// Initialize particles in a droplet pattern
|
|
float cx = SIM_WIDTH/2;
|
|
float cy = SIM_HEIGHT/4;
|
|
|
|
#ifdef __AVR__
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
float angle = random(360) * PI / 180.0f;
|
|
float radius = random(10);
|
|
|
|
float x_offset = icos(angle) * radius;
|
|
float y_offset = isin(angle) * radius;
|
|
|
|
// Constrain BEFORE fixed-point conversion
|
|
float xpos = constrain(cx + x_offset, 0.0f, SIM_WIDTH-1.0f);
|
|
float ypos = constrain(cy + y_offset, 0.0f, SIM_HEIGHT-1.0f);
|
|
|
|
particles[i].x = TO_FIXED(xpos);
|
|
particles[i].y = TO_FIXED(ypos);
|
|
|
|
//Serial.print(str+"Particle "+i+": (angle)"+angle+", (radius)"+radius+" (offsets)"+x_offset+","+y_offset+" -> (x,y)"+particles[i].x+","+particles[i].y+"\n");
|
|
|
|
// Ensure velocities are within range
|
|
particles[i].vx = TO_FIXED(constrain((random(-50,50)/25.0f), -2.0f, 2.0f));
|
|
particles[i].vy = TO_FIXED(constrain((random(-25,50)/25.0f), -1.0f, 2.0f));
|
|
}
|
|
#else
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
float angle = random(360) * PI / 180.0;
|
|
float radius = random(10);
|
|
particles[i].x = cx + icos(angle) * radius;
|
|
particles[i].y = cy + isin(angle) * radius;
|
|
particles[i].vx = random(-50,50)/25.0; // -2 to +2
|
|
particles[i].vy = random(-25,50)/25.0; // -1 to +2
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void applyPhysics() {
|
|
#ifdef __AVR__
|
|
// Fixed-point implementation
|
|
const fixed_t gravity = TO_FIXED(GRAVITY);
|
|
const fixed_t damping = TO_FIXED(DAMPING);
|
|
const fixed_t pressure_radius = TO_FIXED(PRESSURE_RADIUS);
|
|
const fixed_t max_vel = TO_FIXED(MAX_VEL);
|
|
|
|
// Convert spatial grid to fixed-point
|
|
buildSpatialGrid();
|
|
const int32_t pressure_radius_sq = ((int32_t)pressure_radius * pressure_radius) >> FIX_SHIFT;
|
|
|
|
// Particle interactions
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
const int gx = TO_FLOAT(particles[i].x) / CELL_SIZE;
|
|
const int gy = TO_FLOAT(particles[i].y) / CELL_SIZE;
|
|
|
|
for(int dx=-1; dx<=1; dx++) {
|
|
for(int dy=-1; dy<=1; dy++) {
|
|
if(gx+dx < 0 || gx+dx >= GRID_SIZE) continue;
|
|
if(gy+dy < 0 || gy+dy >= GRID_SIZE) continue;
|
|
|
|
GridCell &cell = grid[gx+dx][gy+dy];
|
|
for(int c=0; c<cell.count; c++) {
|
|
const int j = cell.particles[c];
|
|
if(j <= i) continue;
|
|
|
|
const fixed_t dx = particles[j].x - particles[i].x;
|
|
const fixed_t dy = particles[j].y - particles[i].y;
|
|
const fixed_t dist_sq = (dx*dx + dy*dy) >> FIX_SHIFT;
|
|
|
|
if(dist_sq < pressure_radius_sq && dist_sq > TO_FIXED(0.01f)) {
|
|
// Convert to float for precise calculation
|
|
float fx = TO_FLOAT(dx);
|
|
float fy = TO_FLOAT(dy);
|
|
float dist = sqrt(fx*fx + fy*fy) + 0.001f;
|
|
|
|
// Normalize direction vector
|
|
float nx = fx / dist;
|
|
float ny = fy / dist;
|
|
|
|
// Calculate force magnitude
|
|
float force = PRESSURE_FORCE * (1.0f - dist/TO_FLOAT(pressure_radius));
|
|
|
|
// Apply force to both particles
|
|
float fx_impulse = force * nx;
|
|
float fy_impulse = force * ny * 0.7f; // Reduce vertical effect
|
|
|
|
particles[i].vx -= TO_FIXED(fx_impulse);
|
|
particles[i].vy -= TO_FIXED(fy_impulse);
|
|
particles[j].vx += TO_FIXED(fx_impulse);
|
|
particles[j].vy += TO_FIXED(fy_impulse);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Physics update with constraints
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
// Apply gravity
|
|
particles[i].vy += gravity;
|
|
|
|
// Update position
|
|
particles[i].x += particles[i].vx;
|
|
particles[i].y += particles[i].vy;
|
|
|
|
// Velocity constraints
|
|
particles[i].vx = constrain(particles[i].vx, -TO_FIXED(MAX_VEL*2), TO_FIXED(MAX_VEL*2));
|
|
particles[i].vy = constrain(particles[i].vy, -TO_FIXED(MAX_VEL*2), TO_FIXED(MAX_VEL*2));
|
|
// Simple floor collision
|
|
// if(TO_FLOAT(particles[i].y) > SIM_HEIGHT-1) {
|
|
// particles[i].y = TO_FIXED(SIM_HEIGHT-1);
|
|
// particles[i].vy = -particles[i].vy * damping;
|
|
// }
|
|
// Boundary checks
|
|
const float x = TO_FLOAT(particles[i].x);
|
|
const float y = TO_FLOAT(particles[i].y);
|
|
|
|
if(x <= 0 || x >= SIM_WIDTH-1) {
|
|
particles[i].vx = (-damping * particles[i].vx) >> FIX_SHIFT;
|
|
particles[i].x = TO_FIXED(constrain(x, 1, SIM_WIDTH-2));
|
|
}
|
|
|
|
if(y <= 0 || y >= SIM_HEIGHT-1) {
|
|
particles[i].vy = (-damping * particles[i].vy) >> FIX_SHIFT;
|
|
particles[i].y = TO_FIXED(constrain(y, 1, SIM_HEIGHT-2));
|
|
}
|
|
}
|
|
#else
|
|
// Build spatial grid
|
|
buildSpatialGrid();
|
|
|
|
// Interactions using grid
|
|
const float PRESSURE_RADIUS_SQ = PRESSURE_RADIUS * PRESSURE_RADIUS;
|
|
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
const int gx = particles[i].x / CELL_SIZE;
|
|
const int gy = particles[i].y / CELL_SIZE;
|
|
|
|
// Check 3x3 grid around particle
|
|
for(int dx=-1; dx<=1; dx++) {
|
|
for(int dy=-1; dy<=1; dy++) {
|
|
if(gx+dx < 0 || gx+dx >= GRID_SIZE) continue;
|
|
if(gy+dy < 0 || gy+dy >= GRID_SIZE) continue;
|
|
|
|
GridCell &cell = grid[gx+dx][gy+dy];
|
|
for(int c=0; c<cell.count; c++) {
|
|
const int j = cell.particles[c];
|
|
if(j <= i) continue; // Avoid duplicate pairs
|
|
|
|
const float dx = particles[j].x - particles[i].x;
|
|
const float dy = particles[j].y - particles[i].y;
|
|
const float dist_sq = dx*dx + dy*dy;
|
|
|
|
if(dist_sq < PRESSURE_RADIUS_SQ && dist_sq > 0.01f) {
|
|
const float dist = fast_sqrt(dist_sq) + 0.001f;
|
|
const float force = PRESSURE_FORCE * (1.0f - dist/PRESSURE_RADIUS);
|
|
|
|
// Only apply horizontal forces to preserve gravity
|
|
particles[i].vx -= force * dx/dist;
|
|
particles[j].vx += force * dx/dist;
|
|
|
|
// Reduce vertical force impact
|
|
particles[i].vy -= force * dy/dist * 0.3f;
|
|
particles[j].vy += force * dy/dist * 0.3f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Gravity and movement
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
particles[i].vy += GRAVITY;
|
|
particles[i].x += particles[i].vx;
|
|
particles[i].y += particles[i].vy;
|
|
particles[i].vx = constrain(particles[i].vx, -MAX_VEL, MAX_VEL);
|
|
particles[i].vy = constrain(particles[i].vy, -MAX_VEL, MAX_VEL);
|
|
// X-axis
|
|
if(particles[i].x <= 0 || particles[i].x >= SIM_WIDTH-1) {
|
|
particles[i].vx *= -DAMPING;
|
|
particles[i].x = constrain(particles[i].x, 1, SIM_WIDTH-2);
|
|
}
|
|
|
|
// Y-axis
|
|
if(particles[i].y <= 0 || particles[i].y >= SIM_HEIGHT-1) {
|
|
particles[i].vy *= -DAMPING;
|
|
particles[i].y = constrain(particles[i].y, 1, SIM_HEIGHT-2);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Direct canvas buffer access (replace drawParticles)
|
|
void drawParticles() {
|
|
// Clear canvas by direct memory access
|
|
memset(canvasData, 0, sizeof(canvasData));
|
|
// canvas.clear();
|
|
// bool occupied[SIM_WIDTH][SIM_HEIGHT] = {false};
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
#ifdef __AVR__
|
|
int x = static_cast<int>(TO_FLOAT(particles[i].x) + 0.5f);
|
|
int y = static_cast<int>(TO_FLOAT(particles[i].y) + 0.5f);
|
|
#else
|
|
int x = constrain(static_cast<int>(particles[i].x + 0.5f), 0, SIM_WIDTH-1);
|
|
int y = constrain(static_cast<int>(particles[i].y + 0.5f), 0, SIM_HEIGHT-1);
|
|
#endif
|
|
|
|
#if PARTICLE_RADIUS == 1
|
|
canvas.putPixel(x, y);
|
|
#else
|
|
canvas.drawCircle(x,y,PARTICLE_RADIUS);
|
|
#endif
|
|
// if(!occupied[x][y]) {
|
|
// canvas.putPixel(x, y);
|
|
// occupied[x][y] = true;
|
|
|
|
// // Add neighbor pixels if using 2x2
|
|
// if(x < SIM_WIDTH-1 && !occupied[x+1][y]) {
|
|
// canvas.putPixel(x+1, y);
|
|
// occupied[x+1][y] = true;
|
|
// }
|
|
// if(y < SIM_HEIGHT-1 && !occupied[x][y+1]) {
|
|
// canvas.putPixel(x, y+1);
|
|
// occupied[x][y+1] = true;
|
|
// }
|
|
// }
|
|
}
|
|
|
|
display.drawCanvas(0,0,canvas);
|
|
}
|
|
|
|
|
|
void loop() {
|
|
static uint32_t last_frame = 0;
|
|
//lcd_delay(5000);
|
|
drawParticles();
|
|
//delay(1000);
|
|
if(millis() - last_frame >= 33) {
|
|
last_frame = millis();
|
|
applyPhysics();
|
|
} else {
|
|
lcd_delay(millis() - last_frame);
|
|
}
|
|
}
|