447 lines
13 KiB
C++
447 lines
13 KiB
C++
#include <Arduino.h>
|
|
#include <lcdgfx.h>
|
|
#include <FastTrig.h>
|
|
#include "I2Cdev.h"
|
|
// #include "MPU6050_6Axis_MotionApps20.h"
|
|
#include "MPU6050_6Axis_MotionApps612.h"
|
|
|
|
// comment out to disable debug output / serial / led
|
|
#define DEBUG
|
|
// LED for debugging interrupts
|
|
#define LED 17
|
|
|
|
// sleep params
|
|
#define SLEEP_AFTER_MS 10000
|
|
|
|
// External interrupt source
|
|
#define EXT0_PIN 34
|
|
|
|
// Simulation constants
|
|
#define SIM_WIDTH 128
|
|
#define SIM_HEIGHT 64
|
|
#define NUM_PARTICLES 250
|
|
#define PARTICLE_RADIUS 2
|
|
#define GRAVITY 1.0f
|
|
#define DAMPING 0.3f
|
|
#define PRESSURE_RADIUS 3.5f
|
|
#define PRESSURE_FORCE 0.9f
|
|
#define MAX_VEL 2.0f
|
|
#define GRID_SIZE 16
|
|
#define CELL_SIZE (SIM_WIDTH/GRID_SIZE)
|
|
|
|
DisplaySSD1306_128x64_I2C display(-1);
|
|
MPU6050 mpu;
|
|
|
|
// I2C device found at address 0x3C ! // OLED
|
|
// I2C device found at address 0x68 ! // IMU
|
|
|
|
typedef float f32 __attribute__((aligned(4)));
|
|
struct Particle {
|
|
f32 x, y;
|
|
f32 vx, vy;
|
|
};
|
|
|
|
|
|
inline float fast_sqrt(float x) {
|
|
union { float f; uint32_t i; } u;
|
|
u.f = x;
|
|
u.i = 0x5f375a86 - (u.i >> 1);
|
|
return u.f * (1.5f - 0.5f * x * u.f * u.f);
|
|
}
|
|
|
|
Particle particles[NUM_PARTICLES];
|
|
uint8_t canvasData[SIM_WIDTH*(SIM_HEIGHT/8)]; // because of 1bit display, not RGB
|
|
NanoCanvas1 canvas(SIM_WIDTH, SIM_HEIGHT, canvasData);
|
|
|
|
/*---Sleep/wake vars---*/
|
|
uint32_t lastZMot = 0;
|
|
bool zMotInterrupt = false;
|
|
|
|
/*---MPU6050 Control/Status Variables---*/
|
|
bool DMPReady = false; // Set true if DMP init was successful
|
|
uint8_t MPUIntStatus; // Holds actual interrupt status byte from MPU
|
|
uint8_t devStatus; // Return status after each device operation (0 = success, !0 = error)
|
|
uint16_t packetSize; // Expected DMP packet size (default is 42 bytes)
|
|
uint8_t FIFOBuffer[64]; // FIFO storage buffer
|
|
/*---Orientation/Motion Variables---*/
|
|
Quaternion q; // [w, x, y, z] Quaternion container
|
|
VectorInt16 aa; // [x, y, z] Accel sensor measurements
|
|
VectorInt16 gy; // [x, y, z] Gyro sensor measurements
|
|
VectorFloat gravity; // [x, y, z] Gravity vector
|
|
uint16_t fifoCount;
|
|
|
|
/*------Interrupt detection routine------*/
|
|
volatile bool MPUInterrupt = true; // Indicates whether MPU6050 interrupt pin has gone high
|
|
void DMPDataReady() {
|
|
MPUInterrupt = true;
|
|
}
|
|
|
|
// Setup serial communication
|
|
// only for debugging
|
|
void initSerial() {
|
|
Serial.begin(115200);
|
|
while (!Serial) {
|
|
;
|
|
}
|
|
}
|
|
|
|
// Setup I2C communication for IMU
|
|
// would be nice to remove this library
|
|
// requirement and somehow
|
|
// reuse the implementation from the OLED
|
|
void initI2C() {
|
|
Wire.begin();
|
|
Wire.setClock(400000);
|
|
}
|
|
|
|
|
|
void initMpu() {
|
|
zMotInterrupt = false;
|
|
lastZMot = 0;
|
|
// avoid unnecessary resets by checking
|
|
// a non-default value
|
|
if (mpu.getAccelerometerPowerOnDelay() == 2) {
|
|
return;
|
|
}
|
|
mpu.initialize();
|
|
mpu.CalibrateAccel(6); // Calibration Time: generate offsets and calibrate our MPU6050
|
|
mpu.CalibrateGyro(6);
|
|
// time taken for accel to settle after power on
|
|
// i think 4 is the starting and this adds additional wait time
|
|
mpu.setAccelerometerPowerOnDelay(2); //max 3
|
|
mpu.setTempSensorEnabled(false);
|
|
}
|
|
|
|
void mpuSetInterruptMode(){
|
|
// set the interrupt to latch until data is read
|
|
// this is nice so on mpu.getIntStatus() it will clear the interrupt
|
|
mpu.setInterruptLatch(MPU6050_INTLATCH_WAITCLEAR);
|
|
mpu.setInterruptLatchClear(MPU6050_INTCLEAR_STATUSREAD);
|
|
|
|
// i honeslly don't know what the other versions of this is
|
|
// it's either push-pull or open-drain
|
|
mpu.setInterruptDrive(MPU6050_INTDRV_PUSHPULL);
|
|
}
|
|
|
|
/** mpu setup for motion detection
|
|
* this will be used to wake the ESP32
|
|
* from deep sleep (so when ESP is sleeping, accel is in low-ish power mode)
|
|
*/
|
|
void mpuMotionDetectMode() {
|
|
// set up MPU
|
|
// docs recommend waiting for at least 50ms after reset
|
|
mpu.reset();
|
|
delay(100);
|
|
mpu.resetSensors();
|
|
delay(100);
|
|
mpu.setAccelerometerPowerOnDelay(2); //max 3
|
|
mpu.setTempSensorEnabled(false);
|
|
// disable fifo when sleeping
|
|
mpu.setFIFOEnabled(false);
|
|
// low pass filter, 42Hz
|
|
mpu.setDLPFMode(MPU6050_DLPF_BW_42);
|
|
delay(10);
|
|
// high pass filter, from current value (should not be done while in motion)
|
|
mpu.setDHPFMode(MPU6050_DHPF_HOLD);
|
|
|
|
// mpu.setIntEnabled(0);
|
|
// set interrupt to be high when motion detected
|
|
mpu.setInterruptMode(MPU6050_INTMODE_ACTIVEHIGH);
|
|
// apparently this is more accurate
|
|
// See https://github.com/ElectronicCats/mpu6050/blob/master/src/MPU6050.cpp
|
|
mpu.setClockSource(MPU6050_CLOCK_INTERNAL);
|
|
// lowest accel sens
|
|
mpu.setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
|
|
// lowest gyro sens
|
|
mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_250);
|
|
mpu.setDHPFMode(MPU6050_DHPF_RESET); // reset high-pass filter in prep for hold mode
|
|
|
|
// // adjust values from calib script example, if needed
|
|
// mpu.setXGyroOffset(-69);
|
|
// mpu.setYGyroOffset(-48);
|
|
// mpu.setZGyroOffset(-19);
|
|
// mpu.setXAccelOffset(-5158);
|
|
// mpu.setYAccelOffset(-4576);
|
|
// mpu.setZAccelOffset(7687);
|
|
// level of movement required to trigger interrupt
|
|
// recommended default is 20
|
|
mpu.setMotionDetectionThreshold(20);
|
|
// number of milliseconds that the sensor must be at the threshold
|
|
mpu.setMotionDetectionDuration(2);
|
|
|
|
// enable only motion detection interrupt
|
|
mpu.setIntEnabled(1 << MPU6050_INTERRUPT_MOT_BIT);
|
|
mpuSetInterruptMode();
|
|
// ensure the accellerometers are on
|
|
// mpu.setStandbyXAccelEnabled(false);
|
|
// mpu.setStandbyYAccelEnabled(false);
|
|
// mpu.setStandbyZAccelEnabled(false);
|
|
|
|
// we can sleep the gyro
|
|
mpu.setStandbyXGyroEnabled(true);
|
|
mpu.setStandbyYGyroEnabled(true);
|
|
mpu.setStandbyZGyroEnabled(true);
|
|
|
|
}
|
|
|
|
/** mpu setup for active monitoring
|
|
* this will be used to monitor the IMU
|
|
* while the ESP32 is awake to run the sim
|
|
*/
|
|
void mpuActiveMonitorMode() {
|
|
// ensure the gyro is on
|
|
mpu.setStandbyXGyroEnabled(false);
|
|
mpu.setStandbyYGyroEnabled(false);
|
|
mpu.setStandbyZGyroEnabled(false);
|
|
devStatus = mpu.dmpInitialize();
|
|
// disable motion detection interrupt
|
|
// and enable data ready interrupt
|
|
// mpu.setIntEnabled(1 << MPU6050_INTERRUPT_DMP_INT_BIT);
|
|
// mpuSetInterruptMode();
|
|
if (devStatus == 0) {
|
|
mpu.CalibrateAccel(6); // Calibration Time: generate offsets and calibrate our MPU6050
|
|
mpu.CalibrateGyro(6);
|
|
mpu.setDMPEnabled(true);
|
|
packetSize = mpu.dmpGetFIFOPacketSize(); // Get expected DMP packet size for later comparison
|
|
mpu.setIntEnabled((1 << MPU6050_INTERRUPT_ZMOT_BIT) | (1 << MPU6050_INTERRUPT_DMP_INT_BIT));
|
|
mpu.setZeroMotionDetectionDuration(2);
|
|
mpu.setZeroMotionDetectionThreshold(20);
|
|
DMPReady = true;
|
|
}
|
|
#ifdef DEBUG
|
|
else {
|
|
Serial.print(F("DMP Initialization failed (code ")); //Print the error code
|
|
Serial.print(devStatus);
|
|
Serial.println(F(")"));
|
|
// 1 = initial memory load failed
|
|
// 2 = DMP configuration updates failed
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
struct GridCell {
|
|
uint8_t particles[10];
|
|
uint8_t count;
|
|
};
|
|
|
|
GridCell grid[GRID_SIZE][GRID_SIZE];
|
|
|
|
#ifdef DEBUG
|
|
bool blinkState = true;
|
|
#endif
|
|
|
|
void buildSpatialGrid() {
|
|
memset(grid, 0, sizeof(grid));
|
|
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
#ifdef __AVR__
|
|
float x = TO_FLOAT(particles[i].x);
|
|
float y = TO_FLOAT(particles[i].y);
|
|
#else
|
|
float x = particles[i].x;
|
|
float y = particles[i].y;
|
|
#endif
|
|
|
|
int gx = constrain(x / CELL_SIZE, 0, GRID_SIZE-1);
|
|
int gy = constrain(y / CELL_SIZE, 0, GRID_SIZE-1);
|
|
|
|
if(grid[gx][gy].count < 10) {
|
|
grid[gx][gy].particles[grid[gx][gy].count++] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void setup() {
|
|
DMPReady = false;
|
|
#ifdef DEBUG
|
|
initSerial();
|
|
#endif
|
|
initI2C();
|
|
initMpu();
|
|
mpuActiveMonitorMode();
|
|
pinMode(EXT0_PIN, INPUT);
|
|
|
|
#ifdef DEBUG
|
|
pinMode(LED, OUTPUT);
|
|
digitalWrite(LED, blinkState);
|
|
Serial.print(F("Enabling interrupt detection (Arduino external interrupt "));
|
|
Serial.print(digitalPinToInterrupt(EXT0_PIN));
|
|
Serial.println(F(")..."));
|
|
#endif
|
|
attachInterrupt(digitalPinToInterrupt(EXT0_PIN), DMPDataReady, RISING);
|
|
MPUIntStatus = mpu.getIntStatus();
|
|
// }
|
|
// setup display
|
|
display.begin();
|
|
display.clear();
|
|
canvas.setMode(CANVAS_MODE_TRANSPARENT);
|
|
|
|
// Initialize particles in a droplet pattern
|
|
float cx = SIM_WIDTH/2;
|
|
float cy = SIM_HEIGHT/4;
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
float angle = random(360) * PI / 180.0;
|
|
float radius = random(10);
|
|
particles[i].x = cx + icos(angle) * radius;
|
|
particles[i].y = cy + isin(angle) * radius;
|
|
particles[i].vx = random(-50,50)/25.0; // -2 to +2
|
|
particles[i].vy = random(-25,50)/25.0; // -1 to +2
|
|
}
|
|
}
|
|
|
|
void applyPhysics() {
|
|
// Build spatial grid
|
|
buildSpatialGrid();
|
|
|
|
// Interactions using grid
|
|
const float PRESSURE_RADIUS_SQ = PRESSURE_RADIUS * PRESSURE_RADIUS;
|
|
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
const int gx = particles[i].x / CELL_SIZE;
|
|
const int gy = particles[i].y / CELL_SIZE;
|
|
|
|
// Check 3x3 grid around particle
|
|
for(int dx=-1; dx<=1; dx++) {
|
|
for(int dy=-1; dy<=1; dy++) {
|
|
if(gx+dx < 0 || gx+dx >= GRID_SIZE) continue;
|
|
if(gy+dy < 0 || gy+dy >= GRID_SIZE) continue;
|
|
|
|
GridCell &cell = grid[gx+dx][gy+dy];
|
|
for(int c=0; c<cell.count; c++) {
|
|
const int j = cell.particles[c];
|
|
if(j <= i) continue; // Avoid duplicate pairs
|
|
|
|
const float dx = particles[j].x - particles[i].x;
|
|
const float dy = particles[j].y - particles[i].y;
|
|
const float dist_sq = dx*dx + dy*dy;
|
|
|
|
if(dist_sq < PRESSURE_RADIUS_SQ && dist_sq > 0.01f) {
|
|
const float dist = fast_sqrt(dist_sq) + 0.001f;
|
|
const float force = PRESSURE_FORCE * (1.0f - dist/PRESSURE_RADIUS);
|
|
|
|
// Only apply horizontal forces to preserve gravity
|
|
particles[i].vx -= force * dx/dist;
|
|
particles[j].vx += force * dx/dist;
|
|
|
|
// Reduce vertical force impact
|
|
particles[i].vy -= force * dy/dist * 0.3f;
|
|
particles[j].vy += force * dy/dist * 0.3f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Gravity and movement
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
particles[i].vy += gravity.x * GRAVITY; // x / y flipped
|
|
particles[i].vx += gravity.y * GRAVITY;
|
|
particles[i].x += particles[i].vx;
|
|
particles[i].y += particles[i].vy;
|
|
particles[i].vx = constrain(particles[i].vx, -MAX_VEL, MAX_VEL);
|
|
particles[i].vy = constrain(particles[i].vy, -MAX_VEL, MAX_VEL);
|
|
// X-axis
|
|
if(particles[i].x <= 0 || particles[i].x >= SIM_WIDTH-1) {
|
|
particles[i].vx *= -DAMPING;
|
|
particles[i].x = constrain(particles[i].x, 1, SIM_WIDTH-2);
|
|
}
|
|
|
|
// Y-axis
|
|
if(particles[i].y <= 0 || particles[i].y >= SIM_HEIGHT-1) {
|
|
particles[i].vy *= -DAMPING;
|
|
particles[i].y = constrain(particles[i].y, 1, SIM_HEIGHT-2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Direct canvas buffer access (replace drawParticles)
|
|
void drawParticles() {
|
|
// Clear canvas by direct memory access
|
|
memset(canvasData, 0, sizeof(canvasData));
|
|
// canvas.clear();
|
|
for(int i=0; i<NUM_PARTICLES; i++) {
|
|
int x = constrain(static_cast<int>(particles[i].x + 0.5f), 0, SIM_WIDTH-1);
|
|
int y = constrain(static_cast<int>(particles[i].y + 0.5f), 0, SIM_HEIGHT-1);
|
|
|
|
#if PARTICLE_RADIUS == 1
|
|
canvas.putPixel(x, y);
|
|
#else
|
|
canvas.drawCircle(x,y,PARTICLE_RADIUS-1);
|
|
#endif
|
|
}
|
|
|
|
display.drawCanvas(0,0,canvas);
|
|
}
|
|
|
|
void reportIMU() {
|
|
if (!DMPReady) return; // Stop the program if DMP programming fails.
|
|
if (!MPUInterrupt) return;
|
|
MPUIntStatus = mpu.getIntStatus();
|
|
#ifdef DEBUG
|
|
Serial.println(MPUIntStatus);
|
|
#endif
|
|
/* Read a packet from FIFO */
|
|
fifoCount = mpu.getFIFOCount();
|
|
// check for overflow (this should never happen unless our code is too inefficient)
|
|
if ((MPUIntStatus & 0x10) || fifoCount == 1024) {
|
|
// reset so we can continue cleanly
|
|
mpu.resetFIFO();
|
|
#ifdef DEBUG
|
|
Serial.println(F("FIFO overflow, reseting FIFO"));
|
|
#endif
|
|
} else if (MPUIntStatus & (1 << MPU6050_INTERRUPT_ZMOT_BIT)) {
|
|
// zero motion interrupt
|
|
// this is used if the device is placed somewhere or stops moving
|
|
// then we initialize the countdown to sleep
|
|
lastZMot = millis();
|
|
zMotInterrupt = true;
|
|
}
|
|
|
|
// otherwise, check for DMP data ready interrupt (this should happen frequently)
|
|
else if (MPUIntStatus & 0x02) {
|
|
if (mpu.dmpGetCurrentFIFOPacket(FIFOBuffer)) { // Get the Latest packet
|
|
mpu.dmpGetQuaternion(&q, FIFOBuffer);
|
|
mpu.dmpGetGravity(&gravity, &q); // this is all we care about right now
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
// change LED state
|
|
blinkState = !blinkState;
|
|
digitalWrite(LED, blinkState);
|
|
#endif
|
|
// reset interrupt flag
|
|
MPUInterrupt = false;
|
|
}
|
|
|
|
void sleepTimer() {
|
|
if (zMotInterrupt && millis() - lastZMot > SLEEP_AFTER_MS) {
|
|
#ifdef DEBUG
|
|
Serial.println(F("Going to sleep"));
|
|
#endif
|
|
// detach interrupt
|
|
detachInterrupt(digitalPinToInterrupt(EXT0_PIN));
|
|
// sleep
|
|
mpuMotionDetectMode();
|
|
// clear any pending interrupts
|
|
mpu.getIntStatus();
|
|
// enable wakeup from ext0
|
|
esp_sleep_enable_ext0_wakeup(GPIO_NUM_34, 1);
|
|
esp_deep_sleep_start();
|
|
}
|
|
}
|
|
|
|
void loop() {
|
|
static uint32_t last_frame = 0;
|
|
drawParticles();
|
|
reportIMU();
|
|
if(millis() - last_frame >= 33) {
|
|
sleepTimer();
|
|
last_frame = millis();
|
|
applyPhysics();
|
|
} else {
|
|
lcd_delay(millis() - last_frame);
|
|
}
|
|
}
|