flip.ino is working ish (terribly) on the uno mega

This commit is contained in:
zeyus 2025-02-24 22:58:58 +01:00
parent 57d94407bb
commit f5d1cccce6
Signed by: zeyus
GPG key ID: CE89DA73E2E2C2CD
3 changed files with 516 additions and 82 deletions

334
flip.ino Normal file
View file

@ -0,0 +1,334 @@
#include <Arduino.h>
#include <lcdgfx.h>
#include <FastTrig.h>
// this is working on the mega
DisplaySSD1306_128x64_I2C display(-1);
// Simulation constants
#define SIM_WIDTH 128
#define SIM_HEIGHT 64
#define NUM_PARTICLES 80
#define PARTICLE_RADIUS 2
#define GRAVITY 0.9f
#define DAMPING 0.92f
#define PRESSURE_RADIUS 4.5f
#define PRESSURE_FORCE 0.6f
#define MAX_VEL 10.0f
#ifdef __AVR__
typedef int16_t fixed_t;
#define FIX_SHIFT 6
#define TO_FIXED(x) ((fixed_t)((x) * (1<<FIX_SHIFT)))
#define TO_FLOAT(x) ((x) / (1<<FIX_SHIFT))
struct Particle {
fixed_t x, y;
fixed_t vx, vy;
};
#else
typedef float f32 __attribute__((aligned(4)));
struct Particle {
f32 x, y;
f32 vx, vy;
};
#endif
inline float fast_sqrt(float x) {
union { float f; uint32_t i; } u;
u.f = x;
u.i = 0x5f375a86 - (u.i >> 1);
return u.f * (1.5f - 0.5f * x * u.f * u.f);
}
Particle particles[NUM_PARTICLES];
uint8_t canvasData[SIM_WIDTH*(SIM_HEIGHT/8)];
NanoCanvas1 canvas(SIM_WIDTH, SIM_HEIGHT, canvasData);
#define GRID_SIZE 16
#define CELL_SIZE (SIM_WIDTH/GRID_SIZE)
struct GridCell {
uint8_t particles[10];
uint8_t count;
};
GridCell grid[GRID_SIZE][GRID_SIZE];
void buildSpatialGrid() {
memset(grid, 0, sizeof(grid));
for(int i=0; i<NUM_PARTICLES; i++) {
#ifdef __AVR__
float x = TO_FLOAT(particles[i].x);
float y = TO_FLOAT(particles[i].y);
#else
float x = particles[i].x;
float y = particles[i].y;
#endif
int gx = constrain(x / CELL_SIZE, 0, GRID_SIZE-1);
int gy = constrain(y / CELL_SIZE, 0, GRID_SIZE-1);
if(grid[gx][gy].count < 10) {
grid[gx][gy].particles[grid[gx][gy].count++] = i;
}
}
}
void setup() {
// String str; // Hhack
display.begin();
display.clear();
canvas.setMode(CANVAS_MODE_TRANSPARENT);
// Serial.begin(115200);
// while (!Serial);
// Initialize particles in a droplet pattern
float cx = SIM_WIDTH/2;
float cy = SIM_HEIGHT/4;
#ifdef __AVR__
for(int i=0; i<NUM_PARTICLES; i++) {
float angle = random(360) * PI / 180.0f;
float radius = random(10);
float x_offset = icos(angle) * radius;
float y_offset = isin(angle) * radius;
// Constrain BEFORE fixed-point conversion
float xpos = constrain(cx + x_offset, 0.0f, SIM_WIDTH-1.0f);
float ypos = constrain(cy + y_offset, 0.0f, SIM_HEIGHT-1.0f);
particles[i].x = TO_FIXED(xpos);
particles[i].y = TO_FIXED(ypos);
//Serial.print(str+"Particle "+i+": (angle)"+angle+", (radius)"+radius+" (offsets)"+x_offset+","+y_offset+" -> (x,y)"+particles[i].x+","+particles[i].y+"\n");
// Ensure velocities are within range
particles[i].vx = TO_FIXED(constrain((random(-50,50)/25.0f), -2.0f, 2.0f));
particles[i].vy = TO_FIXED(constrain((random(-25,50)/25.0f), -1.0f, 2.0f));
}
#else
for(int i=0; i<NUM_PARTICLES; i++) {
float angle = random(360) * PI / 180.0;
float radius = random(10);
particles[i].x = cx + icos(angle) * radius;
particles[i].y = cy + isin(angle) * radius;
particles[i].vx = random(-50,50)/25.0; // -2 to +2
particles[i].vy = random(-25,50)/25.0; // -1 to +2
}
#endif
}
void applyPhysics() {
#ifdef __AVR__
// Fixed-point implementation
const fixed_t gravity = TO_FIXED(GRAVITY);
const fixed_t damping = TO_FIXED(DAMPING);
const fixed_t pressure_radius = TO_FIXED(PRESSURE_RADIUS);
const fixed_t max_vel = TO_FIXED(MAX_VEL);
// Convert spatial grid to fixed-point
buildSpatialGrid();
const int32_t pressure_radius_sq = ((int32_t)pressure_radius * pressure_radius) >> FIX_SHIFT;
// Particle interactions
for(int i=0; i<NUM_PARTICLES; i++) {
const int gx = TO_FLOAT(particles[i].x) / CELL_SIZE;
const int gy = TO_FLOAT(particles[i].y) / CELL_SIZE;
for(int dx=-1; dx<=1; dx++) {
for(int dy=-1; dy<=1; dy++) {
if(gx+dx < 0 || gx+dx >= GRID_SIZE) continue;
if(gy+dy < 0 || gy+dy >= GRID_SIZE) continue;
GridCell &cell = grid[gx+dx][gy+dy];
for(int c=0; c<cell.count; c++) {
const int j = cell.particles[c];
if(j <= i) continue;
const fixed_t dx = particles[j].x - particles[i].x;
const fixed_t dy = particles[j].y - particles[i].y;
const fixed_t dist_sq = (dx*dx + dy*dy) >> FIX_SHIFT;
if(dist_sq < pressure_radius_sq && dist_sq > TO_FIXED(0.01f)) {
// Convert to float for precise calculation
float fx = TO_FLOAT(dx);
float fy = TO_FLOAT(dy);
float dist = sqrt(fx*fx + fy*fy) + 0.001f;
// Normalize direction vector
float nx = fx / dist;
float ny = fy / dist;
// Calculate force magnitude
float force = PRESSURE_FORCE * (1.0f - dist/TO_FLOAT(pressure_radius));
// Apply force to both particles
float fx_impulse = force * nx;
float fy_impulse = force * ny * 0.7f; // Reduce vertical effect
particles[i].vx -= TO_FIXED(fx_impulse);
particles[i].vy -= TO_FIXED(fy_impulse);
particles[j].vx += TO_FIXED(fx_impulse);
particles[j].vy += TO_FIXED(fy_impulse);
}
}
}
}
}
// Physics update with constraints
for(int i=0; i<NUM_PARTICLES; i++) {
// Apply gravity
particles[i].vy += gravity;
// Update position
particles[i].x += particles[i].vx;
particles[i].y += particles[i].vy;
// Velocity constraints
particles[i].vx = constrain(particles[i].vx, -TO_FIXED(MAX_VEL*2), TO_FIXED(MAX_VEL*2));
particles[i].vy = constrain(particles[i].vy, -TO_FIXED(MAX_VEL*2), TO_FIXED(MAX_VEL*2));
// Simple floor collision
// if(TO_FLOAT(particles[i].y) > SIM_HEIGHT-1) {
// particles[i].y = TO_FIXED(SIM_HEIGHT-1);
// particles[i].vy = -particles[i].vy * damping;
// }
// Boundary checks
const float x = TO_FLOAT(particles[i].x);
const float y = TO_FLOAT(particles[i].y);
if(x <= 0 || x >= SIM_WIDTH-1) {
particles[i].vx = (-damping * particles[i].vx) >> FIX_SHIFT;
particles[i].x = TO_FIXED(constrain(x, 1, SIM_WIDTH-2));
}
if(y <= 0 || y >= SIM_HEIGHT-1) {
particles[i].vy = (-damping * particles[i].vy) >> FIX_SHIFT;
particles[i].y = TO_FIXED(constrain(y, 1, SIM_HEIGHT-2));
}
}
#else
// Build spatial grid
buildSpatialGrid();
// Interactions using grid
const float PRESSURE_RADIUS_SQ = PRESSURE_RADIUS * PRESSURE_RADIUS;
for(int i=0; i<NUM_PARTICLES; i++) {
const int gx = particles[i].x / CELL_SIZE;
const int gy = particles[i].y / CELL_SIZE;
// Check 3x3 grid around particle
for(int dx=-1; dx<=1; dx++) {
for(int dy=-1; dy<=1; dy++) {
if(gx+dx < 0 || gx+dx >= GRID_SIZE) continue;
if(gy+dy < 0 || gy+dy >= GRID_SIZE) continue;
GridCell &cell = grid[gx+dx][gy+dy];
for(int c=0; c<cell.count; c++) {
const int j = cell.particles[c];
if(j <= i) continue; // Avoid duplicate pairs
const float dx = particles[j].x - particles[i].x;
const float dy = particles[j].y - particles[i].y;
const float dist_sq = dx*dx + dy*dy;
if(dist_sq < PRESSURE_RADIUS_SQ && dist_sq > 0.01f) {
const float dist = fast_sqrt(dist_sq) + 0.001f;
const float force = PRESSURE_FORCE * (1.0f - dist/PRESSURE_RADIUS);
// Only apply horizontal forces to preserve gravity
particles[i].vx -= force * dx/dist;
particles[j].vx += force * dx/dist;
// Reduce vertical force impact
particles[i].vy -= force * dy/dist * 0.3f;
particles[j].vy += force * dy/dist * 0.3f;
}
}
}
}
}
// Gravity and movement
for(int i=0; i<NUM_PARTICLES; i++) {
particles[i].vy += GRAVITY;
particles[i].x += particles[i].vx;
particles[i].y += particles[i].vy;
particles[i].vx = constrain(particles[i].vx, -MAX_VEL, MAX_VEL);
particles[i].vy = constrain(particles[i].vy, -MAX_VEL, MAX_VEL);
// X-axis
if(particles[i].x <= 0 || particles[i].x >= SIM_WIDTH-1) {
particles[i].vx *= -DAMPING;
particles[i].x = constrain(particles[i].x, 1, SIM_WIDTH-2);
}
// Y-axis
if(particles[i].y <= 0 || particles[i].y >= SIM_HEIGHT-1) {
particles[i].vy *= -DAMPING;
particles[i].y = constrain(particles[i].y, 1, SIM_HEIGHT-2);
}
}
#endif
}
// Direct canvas buffer access (replace drawParticles)
void drawParticles() {
// Clear canvas by direct memory access
memset(canvasData, 0, sizeof(canvasData));
// canvas.clear();
// bool occupied[SIM_WIDTH][SIM_HEIGHT] = {false};
for(int i=0; i<NUM_PARTICLES; i++) {
#ifdef __AVR__
int x = static_cast<int>(TO_FLOAT(particles[i].x) + 0.5f);
int y = static_cast<int>(TO_FLOAT(particles[i].y) + 0.5f);
#else
int x = constrain(static_cast<int>(particles[i].x + 0.5f), 0, SIM_WIDTH-1);
int y = constrain(static_cast<int>(particles[i].y + 0.5f), 0, SIM_HEIGHT-1);
#endif
#if PARTICLE_RADIUS == 1
canvas.putPixel(x, y);
#else
canvas.drawCircle(x,y,PARTICLE_RADIUS);
#endif
// if(!occupied[x][y]) {
// canvas.putPixel(x, y);
// occupied[x][y] = true;
// // Add neighbor pixels if using 2x2
// if(x < SIM_WIDTH-1 && !occupied[x+1][y]) {
// canvas.putPixel(x+1, y);
// occupied[x+1][y] = true;
// }
// if(y < SIM_HEIGHT-1 && !occupied[x][y+1]) {
// canvas.putPixel(x, y+1);
// occupied[x][y+1] = true;
// }
// }
}
display.drawCanvas(0,0,canvas);
}
void loop() {
static uint32_t last_frame = 0;
//lcd_delay(5000);
drawParticles();
//delay(1000);
if(millis() - last_frame >= 33) {
last_frame = millis();
applyPhysics();
} else {
lcd_delay(millis() - last_frame);
}
}

113
sketch copy.ino Normal file
View file

@ -0,0 +1,113 @@
#include <lcdgfx.h>
#include <nano_engine_v2.h>
#include <nano_gfx_types.h>
#define BAUD_RATE 115200
#include <Arduino.h>
#include <lcdgfx.h>
// The parameters are RST pin, BUS number, CS pin, DC pin, FREQ (0 means default), CLK pin, MOSI pin
//DisplaySSD1325_128x64_SPI display(3,{-1, 4, 5, 0,-1,-1}); // Use this line for Atmega328p (3=RST, 4=CE, 5=D/C)
//DisplaySSD1325_128x64_I2C display(-1); // or (-1,{busId, addr, scl, sda, frequency}). This line is suitable for most platforms by default
//DisplaySSD1325_128x64_SPI display(22,{-1, 5, 21, 0,-1,-1}); // Use this line for ESP32 (VSPI) (gpio22=RST, gpio5=CE for VSPI, gpio21=D/C)
//DisplaySSD1325_128x64_SPI display(4,{-1, -1, 5, 0,-1,-1}); // Use this line for ESP8266 Arduino style rst=4, CS=-1, DC=5
// And ESP8266 RTOS IDF. GPIO4 is D2, GPIO5 is D1 on NodeMCU boards
DisplaySSD1306_128x64_I2C display(-1);
#define PANEL_RES_X 128
#define PANEL_RES_Y 64
#define SIM_WIDTH (PANEL_RES_X)
#define SIM_HEIGHT PANEL_RES_Y
#define NUM_PARTICLES 255
#define FIXED_SHIFT 8
typedef int16_t fixed_t;
#define TO_FIXED(x) ((fixed_t)((x) * (1 << FIXED_SHIFT)))
#define TO_FLOAT(x) ((float)(x) / (1 << FIXED_SHIFT))
struct Particle {
fixed_t x, y;
fixed_t vx, vy;
};
Particle particles[NUM_PARTICLES];
const int canvasWidth = SIM_WIDTH; // Width must be power of 2, i.e. 16, 32, 64, 128...
const int canvasHeight = SIM_HEIGHT; // Height must be divided on 8, i.e. 8, 16, 24, 32...
const fixed_t gravity = TO_FIXED(0.4);
const fixed_t damping = TO_FIXED(0.6);
const fixed_t border = TO_FIXED(0.1);
const uint32_t frame_time = 33; // ~30 FPS
uint8_t canvasData[canvasWidth*(canvasHeight/8)];
NanoCanvas1 canvas(canvasWidth, canvasHeight, canvasData);
void updatePhysics() {
const fixed_t max_x = TO_FIXED(SIM_WIDTH-1);
const fixed_t max_y = TO_FIXED(SIM_HEIGHT-1);
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].vy += gravity;
particles[i].x += particles[i].vx;
particles[i].y += particles[i].vy;
particles[i].x = constrain(particles[i].x, TO_FIXED(0), max_x);
particles[i].y = constrain(particles[i].y, TO_FIXED(0), max_y);
// Boundary collisions
if (TO_FLOAT(particles[i].x) <= TO_FLOAT(border) || TO_FLOAT(particles[i].x) >= (SIM_WIDTH - TO_FLOAT(border))) {
particles[i].vx = -particles[i].vx * damping;
particles[i].x = constrain(particles[i].x, border, TO_FIXED(SIM_WIDTH) - border);
}
if (TO_FLOAT(particles[i].y) < TO_FLOAT(border) || TO_FLOAT(particles[i].y) >= (SIM_HEIGHT - TO_FLOAT(border))) {
particles[i].vy = -particles[i].vy * damping;
particles[i].y = constrain(particles[i].y, border, TO_FIXED(SIM_HEIGHT) - border);
}
}
}
void drawParticles() {
canvas.clear();
for (int i = 0; i < NUM_PARTICLES; i++) {
int x = constrain(TO_FLOAT(particles[i].x), 0, SIM_WIDTH-1);
int y = constrain(TO_FLOAT(particles[i].y), 0, SIM_HEIGHT-1);
canvas.putPixel(x, y);
}
display.drawCanvas(0,0,canvas);
}
// Setup, initialize
void setup()
{
//Serial.begin(115200);
display.begin();
display.clear();
canvas.setMode( CANVAS_MODE_TRANSPARENT );
// display.setColor( 65535 );
// Initialize particles
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].x = TO_FIXED(random(SIM_WIDTH-1));
particles[i].y = TO_FIXED(random(SIM_HEIGHT/2));
particles[i].vx = TO_FIXED((random(-100, 100)/100.0) * 0.7);
particles[i].vy = TO_FIXED((random(-50, 50)/100.0));
}
}
// Loop forever
void loop()
{
// static uint32_t last_frame = 0;
//if (millis() - last_frame >= frame_time) {
//Serial.print(display.getColor());
//Serial.print("Hi");
updatePhysics();
drawParticles();
//last_frame = millis();
//}
lcd_delay(frame_time);
}

View file

@ -1,13 +1,25 @@
#include <Arduino.h>
#include <ESP32-HUB75-MatrixPanel-I2S-DMA.h>
#include <lcdgfx.h>
#include <nano_engine_v2.h>
#include <nano_gfx_types.h>
// Config
#define PANEL_RES_X 64
#define PANEL_RES_Y 32
#define NUM_PANELS 2
#define SIM_WIDTH (PANEL_RES_X * NUM_PANELS)
#define BAUD_RATE 115200
#include <Arduino.h>
#include <lcdgfx.h>
// The parameters are RST pin, BUS number, CS pin, DC pin, FREQ (0 means default), CLK pin, MOSI pin
//DisplaySSD1325_128x64_SPI display(3,{-1, 4, 5, 0,-1,-1}); // Use this line for Atmega328p (3=RST, 4=CE, 5=D/C)
//DisplaySSD1325_128x64_I2C display(-1); // or (-1,{busId, addr, scl, sda, frequency}). This line is suitable for most platforms by default
//DisplaySSD1325_128x64_SPI display(22,{-1, 5, 21, 0,-1,-1}); // Use this line for ESP32 (VSPI) (gpio22=RST, gpio5=CE for VSPI, gpio21=D/C)
//DisplaySSD1325_128x64_SPI display(4,{-1, -1, 5, 0,-1,-1}); // Use this line for ESP8266 Arduino style rst=4, CS=-1, DC=5
// And ESP8266 RTOS IDF. GPIO4 is D2, GPIO5 is D1 on NodeMCU boards
DisplaySSD1306_128x64_I2C display(-1);
#define PANEL_RES_X 128
#define PANEL_RES_Y 64
#define SIM_WIDTH (PANEL_RES_X)
#define SIM_HEIGHT PANEL_RES_Y
#define NUM_PARTICLES 100
#define NUM_PARTICLES 255
#define FIXED_SHIFT 8
typedef int16_t fixed_t;
@ -18,109 +30,84 @@ struct Particle {
fixed_t x, y;
fixed_t vx, vy;
};
Particle particles[NUM_PARTICLES];
MatrixPanel_I2S_DMA *dma_display;
/*
// Wokwi-compatible pin configuration
HUB75_I2S_CFG::i2s_pins _pins = {
.r1 = 25, .g1 = 26, .b1 = 27,
.r2 = 14, .g2 = 12, .b2 = 13,
.a = 23, .b = 19, .c = 5, .d = 17,
.e = -1, // Required for 64x64 panels
.lat = 4, .oe = 15, .clk = 16
};
*/
const int canvasWidth = SIM_WIDTH; // Width must be power of 2, i.e. 16, 32, 64, 128...
const int canvasHeight = SIM_HEIGHT; // Height must be divided on 8, i.e. 8, 16, 24, 32...
const fixed_t gravity = TO_FIXED(0.4);
const fixed_t damping = TO_FIXED(0.6);
const fixed_t border = TO_FIXED(0.1);
const uint32_t frame_time = 33; // ~30 FPS
// ESP32-S3-WROOM-1 HUB75 Pin Mapping
HUB75_I2S_CFG::i2s_pins _pins = {
.r1 = 1, .g1 = 2, .b1 = 3,
.r2 = 4, .g2 = 5, .b2 = 6,
.a = 7, .b = 8, .c = 9,
.d = 10, .e = -1, // 'e' only needed for 64x64 panels
.lat = 11, .oe = 12, .clk = 13
};
// Color palette
const uint16_t COLORS[] = {
0x001F, 0x03FF, 0x07FF, 0x7FE0, 0x7F80, 0xFFE0, 0xFD20, 0xF800
};
const int NUM_COLORS = sizeof(COLORS)/sizeof(COLORS[0]);
void setup() {
HUB75_I2S_CFG mxconfig(
PANEL_RES_X,
PANEL_RES_Y,
NUM_PANELS,
_pins,
HUB75_I2S_CFG::FM6126A,
false,
HUB75_I2S_CFG::HZ_10M,
true,
HUB75_I2S_CFG::SHIFTREG,
false,
0
);
mxconfig.double_buff = true;
dma_display = new MatrixPanel_I2S_DMA(mxconfig);
dma_display->begin();
dma_display->setBrightness(255);
// Initialize particles
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].x = TO_FIXED(random(SIM_WIDTH));
particles[i].y = TO_FIXED(random(SIM_HEIGHT/2));
particles[i].vx = TO_FIXED((random(-100, 100)/100.0) * 0.7);
particles[i].vy = TO_FIXED((random(-50, 50)/100.0));
}
}
uint8_t canvasData[canvasWidth*(canvasHeight/8)];
NanoCanvas1 canvas(canvasWidth, canvasHeight, canvasData);
void updatePhysics() {
const fixed_t gravity = TO_FIXED(0.15);
const fixed_t damping = TO_FIXED(0.82);
const fixed_t border = TO_FIXED(2.0);
const fixed_t max_x = TO_FIXED(SIM_WIDTH-1);
const fixed_t max_y = TO_FIXED(SIM_HEIGHT-1);
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].vy += gravity;
particles[i].x += particles[i].vx;
particles[i].y += particles[i].vy;
particles[i].x = constrain(particles[i].x, TO_FIXED(0), max_x);
particles[i].y = constrain(particles[i].y, TO_FIXED(0), max_y);
// Boundary collisions
if (particles[i].x < border || particles[i].x >= TO_FIXED(SIM_WIDTH) - border) {
if (TO_FLOAT(particles[i].x) <= TO_FLOAT(border) || TO_FLOAT(particles[i].x) >= (SIM_WIDTH - TO_FLOAT(border))) {
particles[i].vx = -particles[i].vx * damping;
particles[i].x = constrain(particles[i].x, border, TO_FIXED(SIM_WIDTH) - border);
}
if (particles[i].y < border || particles[i].y >= TO_FIXED(SIM_HEIGHT) - border) {
if (TO_FLOAT(particles[i].y) < TO_FLOAT(border) || TO_FLOAT(particles[i].y) >= (SIM_HEIGHT - TO_FLOAT(border))) {
particles[i].vy = -particles[i].vy * damping;
particles[i].y = constrain(particles[i].y, border, TO_FIXED(SIM_HEIGHT) - border);
}
}
}
void drawParticles() {
dma_display->fillScreen(0);
canvas.clear();
for (int i = 0; i < NUM_PARTICLES; i++) {
int x = constrain(TO_FLOAT(particles[i].x), 0, SIM_WIDTH-1);
int y = constrain(TO_FLOAT(particles[i].y), 0, SIM_HEIGHT-1);
// Simplified color selection
uint16_t color = COLORS[(abs(particles[i].vx) + abs(particles[i].vy)) % NUM_COLORS];
dma_display->drawPixel(x, y, color);
canvas.putPixel(x, y);
}
display.drawCanvas(0,0,canvas);
}
// Setup, initialize
void setup()
{
//Serial.begin(115200);
display.begin();
display.clear();
canvas.setMode( CANVAS_MODE_TRANSPARENT );
// display.setColor( 65535 );
// Initialize particles
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].x = TO_FIXED(random(SIM_WIDTH-1));
particles[i].y = TO_FIXED(random(SIM_HEIGHT/2));
particles[i].vx = TO_FIXED((random(-100, 100)/100.0) * 0.7);
particles[i].vy = TO_FIXED((random(-50, 50)/100.0));
}
}
void loop() {
static uint32_t last_frame = 0;
const uint32_t frame_time = 33; // ~30 FPS
if (millis() - last_frame >= frame_time) {
// Loop forever
void loop()
{
// static uint32_t last_frame = 0;
//if (millis() - last_frame >= frame_time) {
//Serial.print(display.getColor());
//Serial.print("Hi");
updatePhysics();
drawParticles();
last_frame = millis();
}
//last_frame = millis();
//}
lcd_delay(frame_time);
}