initial commit

This commit is contained in:
zeyus 2025-02-23 20:24:49 +01:00
parent 918c767c03
commit 9630c6c2b4
Signed by: zeyus
GPG key ID: A836639BA719C614
4 changed files with 339 additions and 2 deletions

View file

@ -1,2 +1,15 @@
# FLIP-ESP32-I2C-OLED
more details to come, a project for making a FLIP fluid simulation with accelerometer + gyro with a cheap OLED and an ESP32 board
I wanted to make an ESP32 based 128x64 I2C OLED FLIP simulator,
inspired by:
https://mitxela.com/projects/fluid-pendant
but with way cheaper and easier components.
It seemse like there's not a huge body of work on this, but I did find this project:
https://wokwi.com/projects/420908950128021505
(no user information)
anyway...documentation will go on my site: https://zeyus.com/
I'm going to use the following components:

106
fluid.cpp Normal file
View file

@ -0,0 +1,106 @@
#include <iostream>
#include <vector>
#include <chrono>
#include <cstdlib>
#include <cmath>
using namespace std;
// Simulation constants
const int SIM_WIDTH = 64;
const int SIM_HEIGHT = 32;
const int NUM_PARTICLES = 100;
struct Particle {
double x, y;
double vx, vy;
};
vector<Particle> particles(NUM_PARTICLES);
void initializeParticles() {
for (auto& p : particles) {
p.x = rand() % SIM_WIDTH;
p.y = rand() % (SIM_HEIGHT / 2);
p.vx = (rand() % 200 - 100) / 100.0 * 0.7;
p.vy = (rand() % 100 - 50) / 100.0;
}
}
void updatePhysics() {
const double gravity = 0.15;
const double damping = 0.82;
const double border = 2.0;
for (auto& p : particles) {
p.vy += gravity;
p.x += p.vx;
p.y += p.vy;
// Horizontal boundary collisions
if (p.x < border || p.x >= SIM_WIDTH - border) {
p.vx = -p.vx * damping;
p.x = max(border, min(p.x, SIM_WIDTH - border - 0.1));
}
// Vertical boundary collisions
if (p.y < border || p.y >= SIM_HEIGHT - border) {
p.vy = -p.vy * damping;
p.y = max(border, min(p.y, SIM_HEIGHT - border - 0.1));
}
}
}
void drawFrame() {
vector<vector<char> > grid(SIM_HEIGHT, vector<char>(SIM_WIDTH, ' '));
// Plot particles
for (const auto& p : particles) {
int x = static_cast<int>(p.x);
int y = static_cast<int>(p.y);
x = max(0, min(SIM_WIDTH - 1, x));
y = max(0, min(SIM_HEIGHT - 1, y));
grid[y][x] = 'o';
}
// Clear screen and reset cursor
cout << "\033[H";
// Draw grid
for (const auto& row : grid) {
for (char c : row) {
cout << c;
}
cout << '\n';
}
cout << flush;
}
int main() {
srand(time(nullptr));
initializeParticles();
// Hide cursor
cout << "\033[?25l";
auto last_frame = chrono::steady_clock::now();
const chrono::milliseconds frame_delay(33);
try {
while (true) {
auto now = chrono::steady_clock::now();
if (now - last_frame >= frame_delay) {
updatePhysics();
drawFrame();
last_frame = now;
}
}
} catch (...) {
// Show cursor before exiting
cout << "\033[?25h";
}
// Restore cursor
cout << "\033[?25h";
return 0;
}

92
fluid.py Normal file
View file

@ -0,0 +1,92 @@
import time
import random
import sys
# Simulation constants
SIM_WIDTH = 128
SIM_HEIGHT = 64
NUM_PARTICLES = 200
GRAVITY = 0.5
DAMPING = 0.82
BORDER = 2.0
FRAME_DELAY = 0.033 # ~30 FPS
class Particle:
def __init__(self):
self.x = random.uniform(BORDER, SIM_WIDTH - BORDER)
self.y = random.uniform(BORDER, SIM_HEIGHT/2 - BORDER)
self.vx = random.uniform(-1, 1) * 0.7
self.vy = random.uniform(-0.5, 0.5)
def initialize_particles(num_particles):
return [Particle() for _ in range(num_particles)]
def update_physics(particles):
for p in particles:
# Apply gravity
p.vy += GRAVITY
# Update position
p.x += p.vx
p.y += p.vy
# Horizontal boundary collisions
if p.x < BORDER or p.x >= SIM_WIDTH - BORDER:
p.vx *= -DAMPING
p.x = max(BORDER, min(p.x, SIM_WIDTH - BORDER - 0.1))
# Vertical boundary collisions
if p.y < BORDER or p.y >= SIM_HEIGHT - BORDER:
p.vy *= -DAMPING
p.y = max(BORDER, min(p.y, SIM_HEIGHT - BORDER - 0.1))
def draw_frame(particles):
# Initialize empty grid
grid = [[' ' for _ in range(SIM_WIDTH)] for _ in range(SIM_HEIGHT)]
# Plot particles
for p in particles:
x = int(p.x)
y = int(p.y)
if 0 <= x < SIM_WIDTH and 0 <= y < SIM_HEIGHT:
grid[y][x] = 'o'
# Build frame buffer
buffer = []
for row in grid:
buffer.append(''.join(row))
# Clear screen and move cursor to top-left
sys.stdout.write('\033[H\033[J')
sys.stdout.write('\n'.join(buffer))
sys.stdout.flush()
def main():
particles = initialize_particles(NUM_PARTICLES)
# Hide cursor
sys.stdout.write('\033[?25l')
sys.stdout.flush()
try:
while True:
start_time = time.monotonic()
update_physics(particles)
draw_frame(particles)
# Frame rate control
elapsed = time.monotonic() - start_time
sleep_time = FRAME_DELAY - elapsed
if sleep_time > 0:
time.sleep(sleep_time)
except KeyboardInterrupt:
pass
finally:
# Show cursor before exiting
sys.stdout.write('\033[?25h')
sys.stdout.flush()
if __name__ == "__main__":
main()

126
sketch.ino Normal file
View file

@ -0,0 +1,126 @@
#include <Arduino.h>
#include <ESP32-HUB75-MatrixPanel-I2S-DMA.h>
// Config
#define PANEL_RES_X 64
#define PANEL_RES_Y 32
#define NUM_PANELS 2
#define SIM_WIDTH (PANEL_RES_X * NUM_PANELS)
#define SIM_HEIGHT PANEL_RES_Y
#define NUM_PARTICLES 100
#define FIXED_SHIFT 8
typedef int16_t fixed_t;
#define TO_FIXED(x) ((fixed_t)((x) * (1 << FIXED_SHIFT)))
#define TO_FLOAT(x) ((float)(x) / (1 << FIXED_SHIFT))
struct Particle {
fixed_t x, y;
fixed_t vx, vy;
};
Particle particles[NUM_PARTICLES];
MatrixPanel_I2S_DMA *dma_display;
/*
// Wokwi-compatible pin configuration
HUB75_I2S_CFG::i2s_pins _pins = {
.r1 = 25, .g1 = 26, .b1 = 27,
.r2 = 14, .g2 = 12, .b2 = 13,
.a = 23, .b = 19, .c = 5, .d = 17,
.e = -1, // Required for 64x64 panels
.lat = 4, .oe = 15, .clk = 16
};
*/
// ESP32-S3-WROOM-1 HUB75 Pin Mapping
HUB75_I2S_CFG::i2s_pins _pins = {
.r1 = 1, .g1 = 2, .b1 = 3,
.r2 = 4, .g2 = 5, .b2 = 6,
.a = 7, .b = 8, .c = 9,
.d = 10, .e = -1, // 'e' only needed for 64x64 panels
.lat = 11, .oe = 12, .clk = 13
};
// Color palette
const uint16_t COLORS[] = {
0x001F, 0x03FF, 0x07FF, 0x7FE0, 0x7F80, 0xFFE0, 0xFD20, 0xF800
};
const int NUM_COLORS = sizeof(COLORS)/sizeof(COLORS[0]);
void setup() {
HUB75_I2S_CFG mxconfig(
PANEL_RES_X,
PANEL_RES_Y,
NUM_PANELS,
_pins,
HUB75_I2S_CFG::FM6126A,
false,
HUB75_I2S_CFG::HZ_10M,
true,
HUB75_I2S_CFG::SHIFTREG,
false,
0
);
mxconfig.double_buff = true;
dma_display = new MatrixPanel_I2S_DMA(mxconfig);
dma_display->begin();
dma_display->setBrightness(255);
// Initialize particles
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].x = TO_FIXED(random(SIM_WIDTH));
particles[i].y = TO_FIXED(random(SIM_HEIGHT/2));
particles[i].vx = TO_FIXED((random(-100, 100)/100.0) * 0.7);
particles[i].vy = TO_FIXED((random(-50, 50)/100.0));
}
}
void updatePhysics() {
const fixed_t gravity = TO_FIXED(0.15);
const fixed_t damping = TO_FIXED(0.82);
const fixed_t border = TO_FIXED(2.0);
for (int i = 0; i < NUM_PARTICLES; i++) {
particles[i].vy += gravity;
particles[i].x += particles[i].vx;
particles[i].y += particles[i].vy;
// Boundary collisions
if (particles[i].x < border || particles[i].x >= TO_FIXED(SIM_WIDTH) - border) {
particles[i].vx = -particles[i].vx * damping;
particles[i].x = constrain(particles[i].x, border, TO_FIXED(SIM_WIDTH) - border);
}
if (particles[i].y < border || particles[i].y >= TO_FIXED(SIM_HEIGHT) - border) {
particles[i].vy = -particles[i].vy * damping;
particles[i].y = constrain(particles[i].y, border, TO_FIXED(SIM_HEIGHT) - border);
}
}
}
void drawParticles() {
dma_display->fillScreen(0);
for (int i = 0; i < NUM_PARTICLES; i++) {
int x = constrain(TO_FLOAT(particles[i].x), 0, SIM_WIDTH-1);
int y = constrain(TO_FLOAT(particles[i].y), 0, SIM_HEIGHT-1);
// Simplified color selection
uint16_t color = COLORS[(abs(particles[i].vx) + abs(particles[i].vy)) % NUM_COLORS];
dma_display->drawPixel(x, y, color);
}
}
void loop() {
static uint32_t last_frame = 0;
const uint32_t frame_time = 33; // ~30 FPS
if (millis() - last_frame >= frame_time) {
updatePhysics();
drawParticles();
last_frame = millis();
}
}